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New descriptions of phase/shape transition regions in nuclei
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Abstract. Phase transitional behavior, critical-point symmetries, and the low-energy nuclear phase diagram
are discussed, with emphasis on the behavior of simple spectroscopic observables. A perspective on the
low-energy nuclear phase diagram from the standpoint of Landau theory is presented as well.

PACS. 21.60.-n Nuclear structure models and methods

1 Introduction

Recent discoveries [1–3] in the γ-ray spectroscopy of 152Sm
and neighboring nuclei have revealed a behavior that can
be described in terms of phase transitions and phase
coexistence. This has led to the development [4,5] of
new “critical-point” symmetries to describe nuclear sys-
tems at these transition points. Spectra closely resembling
these new paradigms were immediately recognized [6,7]
in 152Sm [X(5)] and 134Ba [E(5)], and, soon thereafter
in other nuclei in the A = 150 and 100 regions [8–11].
The upshot of this work is the addition of two analytic,
parameter-free (except for scale) paradigms to the exist-
ing arsenal accessible to describe the low-energy nuclear
structure. These benchmarks are illustrated in fig. 1. It
is the purpose of this paper to briefly discuss the idea
of phase transitions in nuclei, the discovery of X(5), and
a new approach to the discussion of nuclear equilibrium
phases in terms of the classical Landau theory. We will fin-
ish with comments, derived from the Landau discussion,
as to the nature of structural evolution in nuclei and the
pervasiveness of the phase transitional behavior.

To begin we recall the ideas behind first- and second-
order phase transitions in fig. 2. In a second-order phase
transition the system energy E(β) evolves as shown on
the right side of the figure. For any given nucleon number
(or set of model parameters driving the structural evo-
lution) there is only one equilibrium configuration. With
the addition of valence nucleons, the collectivity gradually
grows and deformation develops (compare lines 1 and 2)
in a continuous way.

In contrast, in a first-order phase transition, there are
coexisting configurations —for example, one spherical, one
deformed— and their relative energies vary as a function
of nucleon number as shown on the left. The Z = 64 re-
gion illustrates the underlying microscopic basis [12] for
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Fig. 1. Symmetry triangle for nuclear structure showing the
three traditional limits of structure and the new critical-point
paradigms E(5) and X(5). The line connecting them is a line
of first-order phase transitions, terminating in the second-order
phase transition at E(5).

such a picture. For N ∼ 84 there is a subshell gap in
the proton single-particle energies at Z = 64, due to the
relatively high energy of the π1h11/2 orbit. However, as va-
lence neutrons are added, and soon begin to fill the highly
overlapping ν1h9/2 orbit, the attractive monopole (and
quadrupole) p-n interactions [13] act to lower the energy
of the π1h11/2 orbit, eventually (by N ∼ 90) eradicat-
ing the Z = 64 subshell gap [14]. When this gap is still
effective, the equilibrium configuration develops modest
collectivity from correlations involving the proton π2d5/2

and π1g7/2 orbits below Z = 64. At the same time a
deformed configuration builds up involving the π1h11/2

orbit. However, due to its rather high energy, this con-
figuration is only a metastable (excited) minimum, not
a global one. The energy appears as in case 1 on the
left in fig. 2. As the π1h11/2 energy is lowered with the
addition of valence neutrons, so is the energy of the de-
formed configuration [12–14]. The phase transition occurs
at the critical point at which the spherical and deformed
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Fig. 2. Illustration of the difference between first- and second-
order phase transitions and the Federman-Pittel mechanism
involved in a first-order phase transition. See text.

minima are equal in energy (case 2, fig. 2, left). With
still more valence neutrons the deformed solution becomes
the global minimum (case 3). This scenario is known at
the Federman-Pittel mechanism [12] first elucidated in the
A ∼ 100 region [12] and later extended to the A ∼ 150 re-
gion [14]. Note that, in a first-order phase transition, there
is a kink (discontinuous first derivative) in the equilibrium
energy and a discontinuity in the deformation β.

It is worthwhile noting that the underlying idea of the
disappearance of shell or subshell gaps, that is, the disap-
pearance of certain magic numbers, was revolutionary in
the late 1970’s, but has now, in the era of exotic nuclei,
become a common mantra: its origins [12–14] should not
be forgotten.

The empirical systematics of the Sm isotopes show the
behavior (see fig. 3) of a typical observable, R4/2 ≡ E(4+

1 )
/E(2+

1 ) in such a transition region. R4/2 values below
2.0 are characteristic of seniority-two configurations with
a short-range residual interaction. Values around 2-2.3
are typical of spherical (anharmonic) vibrators while, de-
formed rotors give R4/2 ∼ 3.33. Values near 3.0 mark
the transition from spherical to deformed. The rapid rise
of R4/2 near N = 90 is suggestive of the rapid struc-
tural change near a phase transition. (We will see at the
end that such evidence, while historically valuable, can be
misleading.) The sketches of the potential against β for
R ∼ 2, 3.0, and 3.33 indicate the evolution of the equi-
librium phases. At the phase transitional point (which we
call, somewhat inaccurately, the “critical point”) two de-
generate minima appear in the potential.
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Fig. 3. R4/2 values in Sm as a function of neutron num-
ber, with sketches of the potential for several points. Based
on ref. [7].

2 Critical-point symmetries

It is at this point that the concept of critical-point symme-
try enters. In ref. [1], we had speculated that the extreme
behavior of certain observables hinted at an (unknown)
underlying symmetry. Iachello recognized that, with cer-
tain approximations, a potential similar to that illustrated
for the critical point in fig. 3 could be solved analytically,
thus realizing that speculation in the form of the X(5)
symmetry. His ansatz was to simulate the rise in V (β) at
large β by a vertical (infinite) wall and to ignore the small
barrier between the minima in V (β) at intermediate β.
(Both of these approximations have been assessed [15,16]
and, thus far, bear out the essential predictions of X(5).)
Such an infinite square well in β within the context of a
5-dimensional space (β, γ and the three Euler angles) leads
to a Bessel equation for the β degree of freedom, whose
eigenfunctions Φ(β) are Bessel functions of irrational or-
der and whose eigenvalues are the zeros of these Bessel
functions.

The upshot of this solution is the level scheme for
X(5) shown on the left in fig. 4. A more complete level
scheme is shown in ref. [5]. We stress that, except for
scale, this scheme is parameter free. It exhibits a number
of key predictions, namely R4/2 = 3.01, R0/2 = 5.67, and
R(6+

1 )/R(0
+
2 ) = 0.96. Moreover, an approximate quan-

tum number, s, appears, labeling different major fam-
ilies of states and providing approximate transition se-
lection rules. One feature of particular note is that the
B(E2 : 2+

2 → 0+
2 ) value is about 25% less than the

B(E2 : 2+
1 → 0+

1 ) value. The full set of X(5) characteris-
tics constitutes a rich testing ground for the appropriate
transitional nuclei.

Figure 4 includes a comparison of X(5) with the data
for 152Sm. The empirical level scheme represents a sub-
stantial departure from previous schemes in the liter-
ature, due to new experiments, reported in refs. [1–3]
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Fig. 4. Comparison of X(5) and 152Sm. Based on ref. [7].

especially, that greatly revised certain E2 branching ra-
tios, changed certain γ-ray transition multipolarities, and
altered two key B(E2) values [B(E2 : 4+

2 → 2+
2 ) and

B(E2 : 2+
2 → 0+

2 )] in major ways. These experiments were
carried out primarily at Yale and in Köln, using β-decay
with clover detectors, γγ coincidence work and lifetime
measurements with the Köln and Yale plunger systems.
Subsequent GRID lifetime measurements [17] at the ILL
also have provided new B(E2) values in 152Sm and neigh-
boring nuclei.

The agreement in fig. 4 is excellent, especially consid-
ering the parameter-free nature of the X(5) predictions
(except for scale). The empirical yrast energies and B(E2)
values are intermediate between vibrator and rotor and in
good agreement with X(5). R4/2 = 3.01, close to the 2.91
of X(5), and R0/2 is 5.62, almost exactly the X(5) pre-
diction of 5.67. Moreover, the B(E2 : 2+

2 → 0+
2 ), as in

X(5), is notably less than the corresponding yrast B(E2)
value. The relative intersequence B(E2) values (and rela-
tive E0 strengths —not shown) also are well reproduced
by X(5). Disagreements in the absolute values of these
latter and in the yrare spacings have been discussed else-
where and, while they point to deficiencies in the model,
are not considered serious. In particular, the strengths of
the ∆s = 1 transitions can be easily reduced by a slight
deviation from X(5) in the direction of the rotor.

Originally, we thought that 152Sm was unique in ex-
hibiting X(5) but, spurred by a question from Mark Riley,
we now believe that the entire N = 90 region exhibits be-
havior quite close to X(5). This is suggested by the data
in fig. 5, and the values of the key X(5) signatures given
below the level schemes. In fact, recent lifetime data on
150Nd [8] shows that this nucleus is also an excellent candi-
date for an empirical manifestation of the X(5) symmetry
—better in some respects than 152Sm and less good in
others. Very recent data, presented at this conference by
Dewald [18], shows that 154Gd is also very close to X(5).

The addition of E(5) and X(5) to the litany of an-
alytic paradigms of nuclear structure (see fig. 1) greatly
augments our ability to analyze and interpret the struc-
ture of many nuclei.

Fig. 5. Comparison of X(5) and the N = 90 nuclei. Three key
signatures of X(5), and their empirical values in these nuclei,
are shown at the bottom.

3 The low-energy nuclear phase diagram

The symmetry triangle of fig. 1 exhibits a line of first-order
phase transitions from the X(5) region along the bottom
leg, terminating at the second-order phase transition E(5).
The absence of a phase transition along the SU(3)-O(6)
(prolate rotor to γ-soft rotor) is conspicuous, although well
known [19,20] for over 20 years. Nevertheless, this asym-
metry is somehow viscerally disturbing and has recently
prompted an extended study of structural evolution into
the realm of oblate nuclei that uses the IBA to span the
triangle [21]. Figure 6 (top) schematically shows the be-
havior of R4/2 across the bottom leg of the symmetry tri-
angle of fig. 1. This would be calculated using the IBA in
terms of a parameter ζ that goes from 0 in U(5) to 1 in
SU(3). The behavior is characteristic of a phase transition
with a sharp rise and a change in sign of the second deriva-
tive. The point of steepest ascent, where the first deriva-
tive maximizes, is the phase transition point. The second
panel of fig. 6 illustrates how R4/2 varies along the SU(3)
to O(6) leg of the symmetry triangle, in terms of a param-
eter, χ, that ranges from −√

7/2 in SU(3) to 0 in O(6).
The behavior is now qualitatively different. Though there
is a sharp drop, there is no extremum in ∂R4/2/∂χ and no
turning point where the second derivative changes sign.

However, and this is the key point, if the symmetry tri-
angle is extended [21] to oblate deformations by allowing
χ to continue from 0 to +

√
7/2 we get the results in the

third panel. Now, all the classic characteristics of phase
transitional behavior appear, at χ = 0.

This leads to the concept of the extended symmetry
triangle [21] in the lowest panel of fig. 6, where O(6) is
now seen to be, not only a dynamical symmetry of the
IBA, but also a critical point in the phase transition from
a prolate to an oblate rotor.
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Fig. 6. Schematic illustration of the variations of R4/2 for the
vibrator to prolate rotor (top), prolate rotor to γ soft rotor
(second panel), and prolate rotor to oblate rotor (third panel)
as a function of the IBA parameters ζ and χ (see text). The
bottom panel shows the extended symmetry triangle obtained
both by numerical calculations and Landau theory. The thick
black lines are lines of first-order phase transitions which meet
at a point of second-order phase transition which Iachello sim-
ulated with the symmetry E(5).

4 Landau theory for the nuclear equilibrium
phase diagram

It is possible to achieve the same results in an extremely
simple and elegant way using the essence of Landau’s 1937
theory [22] of phase transitions, applying it (with the ob-
vious caveats about finite systems and quantum fluctua-

tions) to the nuclear case. Landau theory has previously
been applied to hot, rotating nuclei (see, e.g., ref. [23]).
Our treatment here applies to the equilibrium low energy,
low spin states of nuclei. We give a brief treatment here
following the ideas originally presented in ref. [24], but
casting them in a simpler and more general context.

We start with the idea of an energy functional for the
nucleus given by

Φ = Φ0 + δΦ0 , (1)

where Φ0 has a higher symmetry (spherically symmetric)
and δΦ0 breaks spherical symmetry giving a lower (de-
formed) symmetry. We now assume that Φ can be ex-
panded in powers of β and γ as

Φ(P, T ) = Φ0 +Aβ2 +Bβ3 cos 3γ + Cβ4 + . . . . (2)

In Landau theory Φ0, A, B, and C would be functions
of pressure, P , and temperature, T . To maintain the his-
torical link to his work we will continue to use these labels
although, in the nuclear case, they would be something like
neutron and proton number or any two convenient model
parameters, such as ζ or χ discussed above.

We note that everything that follows, including the
derivation of the full nuclear equilibrium phase diagram,
depends solely on the applicability of the expansion in
eq. (2): that is, it is a very general treatment, free from
details of specific potentials.

The essential step is to realize that, for Φ to represent
an equilibrium state of the nucleus, it must be a minimum.
That is, for each value of P , T , Φ must be a minimum
at the value of β describing the system. (For our present
purposes we will take oblate deformation to correspond to
γ = 0◦, β < 0 rather than the Lund convention sometimes
used. This allows us to ignore derivatives with respect to
the factor cos 3γ.) Thus, if β0 represents the equilibrium
deformation, we must have

∂Φ

∂β

∣∣∣∣∣
β0

= 0 and
∂2Φ

∂β2

∣∣∣∣∣
β0

> 0 . (3)

Equation (3), evaluated for Φ in eq. (2), gives

β0(2A+ 3Bβ0 cos 3γ + 4Cβ2
0) = 0 , (4)

2A+ 6Bβ0 cos 3γ + 12Cβ2
0) > 0 . (5)

Equation (4) has two solutions:

β0 = 0 and β0 �= 0 . (6)

For β0 = 0 it is clear from eq. (5) that A > 0. This is the
potential sketched near R4/2 = 2 in fig. 3.

For β0 �= 0, we first consider the case where B = 0.
Then eq. (4) gives

(2A+ 4Cβ2
0) = 0

or

β0 = ±
√

−A
2C

. (7)
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Of course, to avoid catastrophic asymptotics, C must
be positive. Hence, for β0 to be real A must be < 0. This
corresponds to the sketch of the potential nearR4/2 ∼ 3.33
in fig. 3. If A > 0 for the higher (spherical) symmetry and
A < 0 for the lower (deformed) symmetry, then, clearly,
A = 0 for the phase transition. Since this is a single con-
dition in a two-dimensional (PT plane) diagram, the con-
dition A = 0 specifies a curve in this plane. The condition
B = 0 specifies another curve, lying on the A < 0 (de-
formed) side of this plane. The two solutions for finite β0,

for B = 0, β0 = +
√

−A
2C and β0 = −

√
−A
2C , correspond to

solutions on prolate and oblate sides of the B = 0, A < 0
curve. This is illustrated in the lowest panel of fig. 6. We
see that β changes discontinuously across A = 0, making
the A = 0 curve a locus of a first-order phase transition,
and β also jumps discontinuously across the B = 0 curve
which must therefore also be a locus of another first-order
phase transition.

The extended symmetry triangle, at the bottom
of fig. 6, shows 3 lines of first-order phase transition
(spherical-prolate, spherical-oblate, and prolate to oblate),
and four dynamical symmetries (U(5), SU(3), O(6), and
SU(3) to use the language of the IBA). O(6) is both a
dynamical symmetry and a critical point. And E(5) (not
labeled in the figure to reduce clutter) simulates the point
at the junction of the two first-order phase transitions in
fig. 6. This junction is now seen to be an isolated point
of second-order phase transition, corresponding to A = 0,
B = 0, and is therefore identifiable as a nuclear triple
point.

Finally, we see that, except for the γ-soft trajec-
tory through this triple point, it is impossible to change
symmetries without crossing a line of first-order phase
transition. This suggests that phase transitional behavior
may be much more widespread in nuclei than heretofore
thought. This raises an interesting point. Phase transi-
tions are, by definition, rapid. But they are rapid in terms
of some control parameter (e.g., ζ or χ). They are not nec-
essarily rapid in terms of neutron or proton number. That
is, the dependence of ζ and χ on N and Z may be highly
non-linear. Mapping out this dependence could shed light
on the relation of rapid and gradual shape transitions in
nuclei.
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